Identification of Glucose Transporters in Aspergillus nidulans

نویسندگان

  • Thaila Fernanda dos Reis
  • João Filipe Menino
  • Vinícius Leite Pedro Bom
  • Neil Andrew Brown
  • Ana Cristina Colabardini
  • Marcela Savoldi
  • Maria Helena S. Goldman
  • Fernando Rodrigues
  • Gustavo Henrique Goldman
چکیده

To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and -E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and characterization of putative xylose and cellobiose transporters in Aspergillus nidulans

BACKGROUND The conversion of lignocellulosic biomass to biofuels (second-generation biofuel production) is an environmentally friendlier alternative to petroleum-based energy sources. Enzymatic deconstruction of lignocellulose, catalyzed by filamentous fungi such as Aspergillus nidulans, releases a mixture of mono- and polysaccharides, including hexose (glucose) and pentose (xylose) sugars, cel...

متن کامل

A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation.

Fungi employ different carbohydrate uptake systems to adapt to certain environmental conditions and to different carbon source concentrations. The hydrolysis of polymeric carbohydrates and the subsequent uptake of monomeric forms may also play a role in development. Aspergillus nidulans accumulates cell wall components during vegetative growth and degrades them during sexual development. We hav...

متن کامل

Nuclear transporters in a multinucleated organism: functional and localization analyses in Aspergillus nidulans

Nuclear transporters mediate bidirectional macromolecule traffic through the nuclear pore complex (NPC), thus participating in vital processes of eukaryotic cells. A systematic functional analysis in Aspergillus nidulans permitted the identification of 4 essential nuclear transport pathways of a hypothetical number of 14. The absence of phenotypes for most deletants indicates redundant roles fo...

متن کامل

Identification of the mstE gene encoding a glucose-inducible, low affinity glucose transporter in Aspergillus nidulans.

The mstE gene encoding a low affinity glucose transporter active during the germination of Aspergillus nidulans conidia on glucose medium has been identified. mstE expression also occurs in hyphae, is induced in the presence of other repressing carbon sources besides glucose, and is dependent on the function of the transcriptional repressor CreA. The expression of MstE and its subcellular distr...

متن کامل

Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans

Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metaboli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013